中教数据库 > Chinese Annals of Mathematics,Series B > 文章详情

The Initial-Boundary-Value Problems for the Hirota Equation on the Half-Line

更新时间:2023-05-28

【摘要】An initial boundary-value problem for the Hirota equation on the half-line,00, is analysed by expressing the solution q(x, t) in terms of the solution of a matrix Riemann-Hilbert(RH) problem in the complex k-plane. This RH problem has explicit(x, t) dependence and it involves certain functions of k referred to as the spectral functions. Some of these functions are defined in terms of the initial condition q(x,0) = q0(x), while the remaining spectral functions are defined in terms of the boundary values q(0, t) = g0(t), qx(0, t) = g1(t) and qxx(0, t) = g2(t). The spectral functions satisfy an algebraic global relation which characterizes, say, g2(t) in terms of {q0(x), g0(t), g1(t)}.The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.

【关键词】

402 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号