【摘要】An initial boundary-value problem for the Hirota equation on the half-line,00, is analysed by expressing the solution q(x, t) in terms of the solution of a matrix Riemann-Hilbert(RH) problem in the complex k-plane. This RH problem has explicit(x, t) dependence and it involves certain functions of k referred to as the spectral functions. Some of these functions are defined in terms of the initial condition q(x,0) = q0(x), while the remaining spectral functions are defined in terms of the boundary values q(0, t) = g0(t), qx(0, t) = g1(t) and qxx(0, t) = g2(t). The spectral functions satisfy an algebraic global relation which characterizes, say, g2(t) in terms of {q0(x), g0(t), g1(t)}.The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《重庆高教研究》 2015-06-30
《中外医疗》 2015-07-06
《阅江学刊》 2015-07-02
《重庆高教研究》 2015-06-30
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点